时间: 2024-03-17 20:47:13 | 作者: SUV
电子式液压助力的结构原理与机械式液压助力大体相同,最大的不同之处在于提供油压油泵的驱动方法不一样。机械式液压助力的液压泵直接是通过发动机皮带驱动的,而电子式液压助力采用的是由电力驱动的电子泵。
传统的液压助力转向只能根据转向盘转角的变化提供助力;电控液压助力转向系统在传动液压助力转向系统的基础上加装电控系统,使辅助转向力的大小不仅与转向盘的转角增量(或角速度)有关,还与车速有关。
②直接助力式电动转向系统(电子转向助力系统)/电动助力转向(EPS)系统/电动式动力转向系统
Electrical Power Steering,EPS,它利用电动机产生的动力协助驾车者进行转向。由电控单元、电源、助力电机、转向齿轮机构和转向传感器组成,没有了液压助力系统的液压泵、液压管路、转向柱阀体等结构,结构非常简单。
当汽车转向时,电控单元根据传感器检验测试的转向力矩及转向速度等参数,计算出最佳作用力后,使电机工作,推动转向,减轻驾驶员的劳动强度。
电子控制动力转向(EPS或ECPS)系统是根据车速、转向情况等对转向助力实施控制,使动力转向系统在不同的行驶条件下都有最佳的放大赔率:在低速下有较大的放大倍率,能减轻转向操纵力,使转向轻便、灵活;在高速时则适当减小放大倍率,以稳定转向手感,提高高速行驶的操纵稳定性。
减小转向时的操纵力,减轻驾驶员的疲劳程度,特别是装用超低压扁平胎的乘用车更为必要。
根据车速的高低和行驶条件的变化(静态或动态;好路或坏路),提供合适的转向助力,提高汽车行驶的安全性、操纵性、稳定性。
电动式电动转向具有节能、无需油压管路系统,并不直接消耗发动机功率,环保优势强、安装自由度大等优点,但电能动力不如液压动力大,目前只用于前轴负荷较小的轿车上。
机械液压助力转向(Hydraulic Power Steering 液压式动力转向系)是在传统的机械转向系统的基础上增加一套液压转向加力装置而成的,最重要的包含齿轮齿条转向结构和液压系统(液压助力泵、液压缸、活塞等)两部分。一般由助力油罐、液压助力泵、油管、转向控制阀、转向器液压缸(转向动力缸)和活塞等一套液压助力装置构成。采取了液压伺服控制方式构成的液压控制管理系统,主要由V型传动皮带、压力流量控制阀体、油管、动力缸、转向助力泵(液压泵)、转向柱、转向传动轴、储油罐等部件构成。如下图,
工作原理是当汽车转向时,通过发动机皮带带动的液压泵(油泵)产生高压油,在控制阀的作用下,高压油进入动力缸,油压推动活塞,进而产生辅助力推动转向拉杆,辅助推动转向轮偏转,车轮转向。
转向液压泵安装在汽车发动机上,由曲轴通过皮带驱动向外输出油压,转向油管有进、出油管接头,通过油管分别和转向液压泵和转向控制阀连接。通过液压泵加压油液,实现利用液压泵产生的动力推动机械转向器工作,进而达到转向控制的目的。
利用人力与发动机机械能结合,采取了液压作为动力,液压对人力的辅助,这时作用在转向盘的作用力就很小,真实的操作中转向动作依旧是通过驾驶员来控制完成,但作用于转向机构上的动力能源由完全依靠人力改为由动力装置提供,从而减轻了驾驶员的劳动强度。液压式动力转向系操作轻便,灵活省力,维护简单。目前,在汽车上的应用最为广泛,大范围的应用于高速轿车和重型货车上。
液压转向助力泵由发动机驱动,产生转向助力油压,经控制阀向液压缸提供很多压力和流量的工作油液。汽车直线行驶时,转向控制阀将转向油泵泵出来的工作液与油罐相通,转向油泵处于卸荷状态,动力转向器不起助力作用。向右转动方向盘,转向控制阀将转向油泵泵出的工作液与R腔(右腔)接通,将L腔(左腔)与油罐接通,在油压作用下,活塞向下移动,通过传动结构使左右轮向右偏转,以此来实现右转向。向左转向时,情况与上述相反。
带有液压助力齿轮齿条式的转向器系统如下图所示,它是将齿轮齿条式机械转向器与转向动力缸、转向控制阀设计成一体,组成整体式的动力转向器。动力缸活塞与齿条制成一体,将动力缸分成左右两腔。
动力转向缸活塞与转向齿条制成一体,活塞将转向动力缸(即转向器壳体)分成左右两腔;转向动力缸的助力直接作用在齿条上,齿条的动力由一端输出。
当液压助力齿轮齿条式转向器在没有液压辅助的情况下,转向器的工作原理简图如下所示▼
在转向盘上施加的扭转力,通过中间轴传递到转向器主动齿轮(转向控制阀齿轮)上,因为主动齿轮轮齿(转向控制阀齿轮轮齿)与齿条轮齿处于啮合状态,将转向盘传递来的扭转力转换成齿条的线形力,使得齿条左右移动。线性力传递到内、外转向横拉杆,再传递到转向节,转向节扭转车轮方向。
转向油罐的作用是储存/贮存、滤清并冷却液压转向加力装置(助力转向系统)的工作油液(一般是锭子油或透平油)。
转向油泵是液压助力转向系统的供能装置,其作用是将输入的机械能转换为液压能输出。转向油泵的类型:齿轮式、叶片式、转子式、柱塞式等。
流量控制阀的作用:根据系统中油液的压力,来调节流入转向器中油液的流量,从而对系统中油液的压力做调整,防止系统液压过高。避免发动机转速过高时,流量过大,导致系统的功率消耗过多和油温过高。
柱塞下腔通出油腔;柱塞上腔通出油口;出油腔与出油口之间因为量孔的节流作用存在压差。
当流量过大时,出油腔与出油口的压差增大,流量控制阀上下腔的压差增加,导致弹簧被压缩,柱塞上移,将出油腔与进油腔接通,系统的流量降低。
安全阀的作用:限制系统的最高压力,避免转向阻力过大时,系统内部的压力过高会导致油泵、动力缸和管路过载而损坏。
发动机转动转矩,经传动皮带传递到动力转向泵总成皮带盘上,并带动动力转向泵总成轴及转子转动。安装在转子上的叶片,因旋转的离心力作用被甩出,紧贴着泵环(泵后壳体)内壁旋转,将油壶内的转向液吸入泵腔内,并且将转向液经流量控制阀压入转向器,给转向器提供液压助力。
在液压转向系统中,如车轮的剧烈跳动和遇到坑洼路面导致轮胎出现非自主的转向时,能够最终靠液压对活塞的作用能够很好的缓冲和吸收震动,使传递到方向盘上的震动大幅度减少。机械液压助力技术成熟稳定,完全机械结构不依赖电子设备,可靠性高,路感清晰,方便驾驶员判断转向角度,因此应用十分广泛。
但其缺点也很明显,结构较复杂,占用空间大,设计、制造和维护成本都较高。而且单纯的机械式液压助力系统助力力度不可调节,很难兼顾低速和高速行驶时对指向精度的不一样的需求,更不能够满足无人驾驶需求。无论车是否转向,这套系统都要工作,而且在大转向车速较低时,需要液压泵输出更大的功率以获得比较大的助力。所以,也在某些特定的程度上浪费了资源。尤其是低速转弯的时候,觉得方向比较沉,发动机也比较费力气。又由于液压泵的压力很大,也非常容易损害助力系统。还有,机械式液压助力转向系统由液压泵及管路和油缸组成,为保持压力,不论是否需要转向助力,系统总要处于工作状态,能耗较高,这也是耗资源的一个原因所在。一般经济型轿车用机械液压助力系统的比较多。
传统的机械液压助力转向(HPS)会消耗发动机功率,液压泵转子与液压油之间的损耗会产生很大的能量损失,即使液压泵在不转向时也会消耗能量。而且系统结构较为复杂,泵、管路、液压缸等都需要定期维护保养,因此目前在小型轿车中已开始慢慢被淘汰。
转向控制阀结构:扭杆用销2与转向齿轮连接,用销7与阀芯连接,阀芯与转向轴末端固定在一起,因而转向轴通过扭杆带动转向齿轮转动。
特点:滑阀式转向控制阀靠阀体的移动控制油液流量。结构相对比较简单,工艺性好,布置方便,需要较大的轴向安装和运动空间。
转阀结构:4个连通的进油通道A;4个通道B、C与动力缸的左右腔相连;4个回油道D;中空阀体与储油罐相连。
特点:转阀式转向控制阀靠阀体的转动控制油液流量。灵敏度较高,密封件少,体积小,结构更先进,加工要求精度高,目前得到广发应用。
首先位于转向机上的机械阀体(可随转向柱转动),在方向盘没有转动时,阀体保持原位,转向控制阀处于中间位置,来自动力转向泵总成的油液从转向控制阀进油口流入阀腔;由于转向控制阀处于中间位置,使动力缸左右两腔相通,油液从转向控制阀出油口流回到油壶,活塞两侧的油压相同,处于平衡状态,因此液压助力就不起作用。
当方向盘转动时,转向控制阀就会相应的打开或关闭,一侧油液不经过液压缸而直接回流至储油罐,另一侧油液继续注入液压缸内,这样活塞两侧就会产生压差而被推动,进而产生辅助力推动转向拉杆,使转向更加轻松。
当转动转向盘时,转向轴连同转向控制阀阀芯一起转动,因为受到转向节臂传来的路面转向阻力,动力缸活塞和齿条暂时都不能运动,所以转向控制阀齿轮也暂时不能和转向轴一起转动。这样,由转向轴传到转向控制阀齿轮的转矩只能使转向控制阀内的扭杆产生少许扭转变形,使转向轴连同转向控制阀阀芯得以相对转向控制阀齿轮产生不大的转动,从而转向控制阀使动力缸的一侧腔成为高压的进油腔,另一侧腔则成为低压的回油腔。作用在动力缸活塞上的高液压作用力帮助转向控制阀齿轮迫使转向齿条向一侧移动。同时转向控制阀齿轮本身也开始与转向轴同向转动。
只要转向盘继续转动,扭杆的扭转变形便从始至终保持不变,转向控制阀的助力作用也不变。一旦转向盘停止转动,动力缸的一侧腔内的高液压作用力暂时还继续存在,导致转向控制阀齿轮继续转动,使扭杆的变形减小,直到扭杆恢复到自然状态。转向控制阀恢复到中间位置,动力缸左右两侧相通,使液压助力不起作用。此时,转向盘即停驻在某一位置上而不动,则车轮转角保持一定。若再转动转向盘,液压助力又起作用。
动力缸活塞所受的液压力转换成线形力,帮助齿条左右移动,通过转向横拉杆,推动转向节及车轮的转动。
组成:油罐、油泵、储能器、控制阀、动力缸等。系统工作管路中总是保持高压。不转向时,转向控制阀处于关闭状态,只要转向,系统就给转向动力缸供压力,转向控制阀壳体与车轮有连接关系,壳体与阀同向运动,反应迅速。
下图为常压式液压转向加力装置的工作原理图,在方向盘保持中立位置时,转向控制阀经常处于关闭位置。液压泵输出的压力油充入储能器中,当储能器压力增长到规定值后,液压泵即自动卸荷空转,从而储能器压力得以限制在该规定值以下。转动方向盘时,转向控制阀转入工作位置。此时储能器中的液压油流入转向动力缸,加力于转向传动机构上。
常压式的特点是无论方向盘处于中立位置还是转向位置、保持静止还是运动状态,液压系统工作管路中总是保持高压。
常压式由于有储能器积蓄液压能,可以在液压泵不运转的情况下保持一定的转向加力能力,使汽车有可能续驶一定距离。这一点对重型汽车而言尤为重要。
系统中一直存在高油压,响应快。用储能器积蓄液压能量,能够正常的使用较小的油泵;在油泵不运转情况下能保持一定的转向加力能力,使汽车有可能续驶一定距离。
缺点:会造成压力漏油;油泵总要保持系统的压力,会降低油泵的寿命;储能器占用一定的空间;燃油消耗率高;
常流式系统的转向油泵虽然始终工作,但液压助力系统不工作时,油泵处于空转状态。不转向时,转向动力缸活塞两边的工作腔都与低压回油管相通而不起作用,液压泵实际上处于空转状态。转动时,转向控制阀处于与某一转弯方向相应的工作位置,转向动力缸的相应工作腔与回油管路隔绝,与液压泵输出管路相通,而动力缸的另一腔则仍然通回油管路。转向盘停止转动后,转向控制阀随即回复到中立位置,使动力缸停止工作。
优点:结构较简单,液压泵(油泵)常规使用的寿命较长,泄漏较少,消耗功率也较小。
缺点:转向后才建立系统压力,响应慢;为提高相应的速度需要用较大的油泵;
2)按机械转向器、转向控制阀和动力缸的三者的组合及相对位置关系,分为三种
汽车直线行驶时:转向阀处于中立位置,使动力缸左右两腔相通,输入阀体的油液经回油管路流回转向油罐。(常流式转向阀)
油泵供油量一般根据发动机怠速时能使动力转向系统产生足够的转向助力所需的供油量确定,转速越高,供油量越大,而实际上动力转向系统所要求的供油量应该使随着转速的升高保持不变或下降;
液压助力转向除了上面介绍的机械液压助力转向,还有电子液压助力转向(Electro-Hydraulic Power Steering),主要由储油罐(助力油储液罐)、转向控制单元(控制器)、电动泵(电动机/齿轮泵/液压泵)、转向机构(转向机)、EPS警告灯以及和助力转向传感器(转向角速度传感器)等构成。
液压动力转向电子控制管理系统由电子控制管理系统(ECU)、液压转向助力系统和机械转向机构三部分组成。
齿轮泵为电液助力转向系统提供液压助力,齿轮泵由小惯量、内转子、三相无刷直流电机驱动,电源来自汽车12V蓄电池。
其原理与机械液压助力基本相同,转向机结构与液压助力转向机相同,最大的不同之处在于提供油压油泵的驱动方法不一样,机械式液压助力的液压泵是直接通过发动机皮带驱动的,电子式液压助力采用的是由电力驱动的电子泵,是传统中由发动机带动的液压泵改为电动机驱动;同时引入了电控装置,在液压助力转向系统的基础上增加了传感器、转向控制单元等,利用ECU检测方向盘的转向角度,可随速度调节助力力度,由电力驱动电子泵对液压缸施力。轮速传感器的运用将车速引入到转向系统,转向控制单元根据不同的行车状态来控制电动机,从而控制电动液压泵的输出来达到控制整个转向系统动作的目的。其中储油罐、齿轮泵(液压泵)、电机、转向控制单元集成一体,通过CAN与整车中央控制单元总线交换必要信息数据,电子液压助力转向系统的电子控制单元,利用对车速传感器、转向角度传感器等传感器的信息处理,能够最终靠改变电子泵的流量来改变转向助力的力度大小。
电控液压助力转向系统(下图)中的电动液压泵工作,通过液压油为转向机提供助力。
电控单元根据车速调节作用在转向盘上的阻力,经过控制转向控制阀的开启程度来改变液压助力系统辅助力的大小,以此来实现辅助转向力随车速而变化的助力特性。
从广泛意义上讲,电控液压助力转向系统分为两种。一种是为实现车速感应式转向功能,而在机械液压助力转向系统的基础上增加了控制液体流量的电磁阀、车速传感器以及转向控制单元等,转向控制单元根据车速信号控制电磁阀,从而经过控制液体流量实现了助力作用随车速的变化。另一种助力转向系统是用由电动机驱动的液压泵(下图)代替了机械液压助力转向系统中的机械液压泵,
而且增加了车速传感器、转向角速度传感器(下图)以及转向控制单元等部件。
液压式EPS是在普通动力转向系统的基础上增设了控制液体流量的电磁阀、 车速传感器和电控单元,EPS ECU根据车速信号控制电磁阀,使动力转向的助力程度实现连续可调,从而满足汽车在不同速度下的不同转向助力需求,按控制方法不一样,液压式EPS又分旁通流量控制式EPS、反作用力控制式EPS和电磁阀灵敏度控制式EPS三类。
在普通液压转向系统的基础上,增设旁通流量控制阀、车速传感器、转向盘角度传感器、控制开关和电控单元等元件。主要由车速传感器、电磁阀、整体式动力转向控制阀、动力转向液压泵和电子控制单元(EPS ECU)等著成。当车速很低时, EPS ECU输出的脉冲控制信号占空比很小,通过电磁阀线圈的平均电流很小,电磁阀阀芯开启程度也很小,旁路液压油流量小,液压助力作用大,使转向盘操作轻便。当车速提高时,EPS ECU输出的脉冲控制信号占空比很大,使电磁线圈的平均电流增大,电磁阀阀芯的开启程度增大,旁路液压油流量增大,从而使液压助力作用力减小,以提高操纵稳定性。典型流量控制使EPS如下图,
EPS ECU 根据车速信号调节动力缸供油量,实现对转向助力大小的控制。
在转向泵与转向器本体之间设有旁通管路和旁通流量控制阀。按照车速传感器7、转向角速度传感器4及控制开关9的信号,EPS ECU8向电磁线发出控制信号,控制旁通流量控制阀2的旁通流量,从而调整转向器5的供油量。当车速高速行驶时,其旁通流量减少,动力转向控制的灵敏度下降,故转向助力作用也相应降低,以满足高速时增强转向盘手感的需求。低速行驶时,其旁通流量增加,助力作用增强。
阀体内装有主滑阀1和稳定滑阀2。主滑阀右端与电磁线连接,主滑阀移动量与电磁线圈推力成正比,从而改变其左端流量主孔6的流通体积,并可通过调节螺钉4来调节旁通流量的大小。稳压滑阀的功能使保持流量主孔6前后压差的稳定,以使旁通流量与流量主孔的开口面积成正比。
当转向负荷变化使流量主孔前后压差偏离设定值时,稳压滑阀阀芯将在其左侧弹簧力和右侧高压油压作用下移动:如主滑阀压差大于设定值,则阀芯左移,使节流孔面积减小,流入主滑阀内的流量减小,主滑阀前后压差减小;反之,若压差小于设定值,则稳压阀阀芯右移,使节流孔面积增大,流入主滑阀内的流量增加,主滑阀前后压差增大,故流量主孔前后压差稳定,保证旁通流量仅与主滑阀控制流量主孔开口面积相关。
流量控制式EPS的优点是在原液压动力转向系统功能的基础上增加转向机构油量控制功能,故其结构相对比较简单、 成本低廉。但当流向动力转向机构油量降低到极限值时,由于快速转向会产生压力不足和响应速度慢的缺陷,故使其应用场景范围受限。
液压式EPS由于工作所承受的压力和工作灵敏度较高、 尺寸较小而获得广泛应用,但其缺点是结构较为复杂、 功耗较大、 易产生泄漏、 转向助力不易有效控制等。
主要由转向控制阀、分流阀、电磁阀、转向动力缸、转向液压泵、储油箱、车速传感器及电子控制单元(ECU)等组成。典型反作用控制式EPS如下图,
①当汽车停车与低速状态时,车速传感器将反映停车与低速状态的速度信号输送给ECU,ECU向电磁阀提供大的通电电流,导致电磁阀的导通面积变大,从而经分流阀分流的压力重新再回到储油箱。所以作用与柱塞的背压(油压反作用力室压力)降低,于是柱塞推动控制阀轴的力变小,转向盘回程力可在扭力杆上产生较大力矩。回转阀被固定在小齿轮轴上,控制阀随扭力杆扭转作用相应回转,使两阀油孔连通。转向油泵油压作用与动力缸的右室(或左室),动力活塞向左(或向右)运动,从而增加了转向操纵力。
②当汽车处于中高速直线行驶状态时,直线行驶转向角小,扭力杆的相对扭力也比较小,回转阀与控制阀的连通通道的开度相应减小,使得回转阀一侧的油压升高,由于分流阀的作用,电磁阀一侧的油量增加。同时随着车速的增加,ECU向电池阀提供的通电电流减小,导致电池阀的导通面积变小,而作用于油压反作用力室的反压力增加,柱塞推动控制阀轴的压力也变大,增加了驾驶员手的操纵力,拥有非常良好的转向手感。
③当汽车中高速转向运行时,扭力杆扭转角变得更小,回转阀与控制阀的连通口开度也变得更小,在回转阀一侧的油压进一步升高。随着油压上升,压力油从固定阻尼孔侧向油压反作用力供油,这时油压反作用力室出了具有分流阀向之提供的压力油外,还具有从固定阻尼孔流出的压力油,因此导致柱塞的背压增大,柱塞推动控制阀轴的压力也增大,转向盘操纵力随着转向角的增大而增大,所在高速时能获得稳定的转向手感。
电磁阀灵敏度控制式EPS是根据车速控制电磁阀,直接改变动力转向控制阀的油压增益(阀灵敏度)来控制油压的方法。这种转向系统结构相对比较简单、部件少、价格实惠公道,而且具有较大的选择转向力的自由度,能够得到自然的转向手感和良好的转向特性。
电磁阀灵敏度控制式动力转向系统,该系统在转向控制阀的转子阀作了局部改进,并增加了电磁阀、车速传感器和电子控制单元等。转子阀的可变小孔分为低速专用小孔(1R、1L、2R、2L)和高速专用小孔(3R、3L)两种,在高速专用可变孔的下边设有旁通电磁阀回路。
①当车辆停止时,电磁阀完全关闭,若此时向右转动转向盘,则高灵敏度低速专用小孔1R及2R在较小的转矩作用下即可关闭,转向泵的高压油经1L流向转向动力缸右腔室,其左腔室的油液经3L、2L流回转向液罐(储油箱),此时具有轻便的转向特性;并且施加于转向盘的力矩越大,可变小孔1L、2L的开口面积也越大,节流作用越小,转向助力作用越明显。
②当车速提高时,随着车速的增高,在电控单元作用下,电磁阀开度也呈线性增加,若此时向右转到转向盘,转向泵的高压油经1L、3R旁通电磁阀流回转向油罐(储油箱)。此时,转向动力缸右腔的转向助力油压就取决于旁通电磁阀和灵敏度低的高速专用可变量孔3R的开度,在电控单元控制下,车速越高,则电磁阀开度越大,旁通流量也越大,转向助力作用越小。
③当车速不变时,施加于转向盘上的转向力矩越小,高速专用小孔3R的开度也越大,转向助力作用也越小;当转向力矩增大时,3R的开度逐渐减小,转向助力作用也随之增大。
综上所述,此系统不仅仅具备较大的选择转向力的自由度,还可使驾驶人获得非常自然的转向手感和良好的速度转向特性,而且结构相对比较简单、部件少、价格便宜。
①灵敏度控制式EPS对转向控制阀做了局部改进,并增加了电磁阀、车速传感器和电控单元。
引言 汽车行驶记录仪是能够记录和再现汽车行驶状态的一种数字式电子记录装置,它可以全程记录汽车的行驶数据,并通过对所记录的行驶信息数据的分析,对车辆的行驶状况予以精确的掌控。汽车行驶记录仪可有效预防驾驶员的违章驾驶,降低车辆的交通事故。早在20世纪70年代,欧共体就开始全面强制使用机电模拟式汽车行驶记录仪并使得交通事故率降低了30%-50%。90年代以来,美国、日本、马来西亚、新加坡等国家也纷纷制定汽车行驶记录仪的法规。 我国从20世纪80年代开始做汽车行驶记录仪的研制。2003年4月15日,由公安部有关部门起草、国家标准化管理委员会、国家经贸委审定通过,国家质量监督检查检疫总局发布了汽车行驶记录仪的国家标准(GB
行驶记录仪的设计 /
旧金山 -- 从安全气囊到牵引力控制,这些汽车安全领域的先锋技术总是首先现身于豪华汽车,而后在成本下降后飞入“寻常百姓家”。 大众汽车(Volkswagen Group)旗下的奥迪(Audi)、保时捷(Porsche)和宾利(Bentley)很早之前就开始采用基于传感器的碰撞避免系统。今年7月29日,这家德国汽车制造商表示,将为美国产品线年款平价大众车型搭配自适应性巡航控制、盲点检测、自动停车等功能。 而过去,这些功能可是仅现身于途悦(Touareg)这一级别的车型。大众北美集团CEO Michael Horn在一项声明中表示,大众汽车认为已经“是时候广泛推广这些技术”,其中大部分功能
从汽车诞生时起,制动系统在车辆安全方面就扮演着至关重要的角色。现今,随着电气化和智能网联化的深入发展,汽车制动系统和相关行业亦正在呈现新的变革和发展。 技术之变 在电气化和无人驾驶大趋势下,动力系统及电子电器架构等均发生较大变化,这对制动系统提出了新的要求。 首先,对于 电动汽车 而言,发动机被电机取代后,因为没有可供助力器使用的真空源,导致没办法为汽车刹车总泵提供真空助力,这就需要新的技术方案来解决这一安全制动问题,而目前较为常用的是利用电动真空泵为真空助力器提供真空。 其次,在未来无人驾驶车辆上,转向杆、刹车和加速踏板等都不会再保留,车辆将通过线控技术来实现转向或制动。单就线控制动而言,因技术开发难度较大,目前
之变 /
通过对CAPP(computer aided process planning)$统的功能分析,从工艺设计、管理,集成等几个维度确定CAPP系统的功能需求,进而设计和实现适合汽车线束制造企业的CAPP系统总体方案和各个功能模块.着重探讨线束图形数据库的设计、工艺过程的生成、工艺过程的输出及与Web信息系统的集成等关键技术,并给出系统实现方法. 汽车电线束素有汽车神经之称,是汽车动力和各种信号分配系统PASDS(Power and Signal Distribution System)的传输载体。就目前的技术水平而言,汽车的功能愈强,其线束的技术上的含金量及复杂程度就愈高。目前有很大一部分线束生产企业仍然由工艺设计人员使用A
研究与开发 /
介绍两辊式汽车变截面板簧轧机计算机控制管理系统的主要硬件结构、设计方法,以及多模态智能控制算法在液压伺服系统中的应用。该控制管理系统设计合理,运行稳定,控制精度高。 变截面轧机是生产汽车变截面板簧的关键设备。它将加热到950℃的等截面弹簧钢板通过转动的轧辊压缩及拉拔机构拉拔,使其横断面按照设计的变形曲线改变。目前国内钢板弹簧生产企业或者采用进口轧机如英国西尔公司、德国波克公司的某些产品,或者采用国产的仿西尔公司的三辊轧机及一些简易轧机。简易轧机生产的产品精度低、展宽大,国产三辊轧机能耗、设备的体积较大。 两辊式变截面轧机是目前国内开发出的技术上的含金量较高的轧机产品。该轧机机械液压结构设计紧凑,能耗低,机械结构中无侧辊限制板簧在
近日,大众旗下第三代途锐SUV于今年3月在中国亮相,这是首次采用主动式后桥转向系统的车型,其前后车轮可根据特定驾驶情景进行精准调节。整体上,该款新系统能提升车辆的操控性及稳定性。 驾驶情景1: 若车速高于37 km/h,后车轮将自动向着与前车轮相反的角度转动。换言之,前轮向左转,后轮则自动向右转5度,从而提升车辆的可操作性。 该全轮转向系统可将转弯半径(turn radius)从12.19米缩减至11.19米,当进行停车时,其效果较为明显。值得一提的是,该技术将全轮转向系统与拖车稳定辅助系统(Trailer Assist)相结合,可完成拖车的自动转向。 驾驶情景2: 若车速高于37 km/h,在转向时,后轮与前轮的转向保持一致,
目前汽车报警装置已被大范围的应用,并种类非常之多,但大多报警装置均有其局限性。如早期出现的红外报警系统,最大的缺点是红外线波易受干扰,总系统的警示音常呈现不稳定的乱鸣状态,另外对深黑色粗糙表面物体的反应也较差。更糟糕的是,无论是红外线发射器或接收器,只要有一层薄薄的冰雪或泥尘将其覆盖,系统就会失效。最近在欧美出现了一种电磁感应倒车雷达,此种装置价格中等,并且完全隐密,但可惜的是,安装困难(必须卸下保险杠贴在内侧),而且只能探测动态物品,当车在后退行进时,可探测到物体,但车一旦停止后退行进,则任何物体都不被认可。 本设计采用单片机与超声波结合的倒车报警系统除具有普通倒车雷达的作用外,用户还能够准确的通过个人的需要设定汽车离阻挡物报警的距离
的设计 /
关于汽车电控系统,它其实并不是新能源电动汽车专有的,燃油车同样具备,只不过新能源电动汽车的电控系统更加的复杂,也更强大。 汽车电控系统,就是汽车电子控制管理系统,是由模块控制的系统总称,它由硬件和软件构成,电控实际上的意思就是车辆所有电子控制管理系统的软件+硬件的总称,我们大家可以将整个电控系统理解为车辆的神经系统,这个系统能控制车辆的运行能力,所以电控系统越强大,车辆的控制与行驶能力越出色。今天咱们就来聊聊新能源汽车的整车控制管理系统。 整车控制管理系统由加速踏板位置传感器,制动踏板位置传感器,电子换挡器等输入信号传感器,整车控制器(VCU),电机控制器(MCU),电池管理系统(BMS)等控制模块和驱动电机,动力电池等执行元件组成。 应用图
以太网: 查看真实信号-应用指南
效率测试
可靠性试验方法
有奖征文:邀一线汽车VCU/MCU开发工程师,分享开发经验、难题、成长之路等
MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!第三期考题上线,跟帖赢好礼~
兆易创新推出GD32F5系列Cortex®-M33内核MCU,提供工业高性能应用新选择
中国北京(2024年3月7日) 业界领先的半导体器件供应商兆易创新GigaDevice(股票代码 603986)今日宣布,正式推出基于Arm® Cortex ...
IAR Embedded Workbench for Arm已全面支持小华半导体系列芯片,加速高端工控MCU和车用MCU应用的安全开发中国,上海 – 2024年3月7日 ...
LED显示屏灰度是LED显示屏的重要参数之一,LED显示屏灰度就是LED的色阶或灰阶,是指LED显示屏亮度的明暗程度,LED显示屏灰度等级是指LED显 ...
一、简介超声换能器(UltrasonicTransducer,UT)是指在超声波频率范围内实现声能与电能相互转换的器件,根据换能工作状态大致上可以分为三种类型 ...
Spartan 6、7系列即将被取代:AMD推出16nm的第六代Spartan UltraScale+
日前,AMD推出全新的Spartan UltraScale+系列,作为第六代Spartan FPGA产品,它依然延续Spartan的低成本、低功耗优势,并取代了Spartan 6和Spartan 7系列。...
如何在两部SDR接收器之间远程遥控切换天线款制冷系统原理的动态图解 制冷系统原理图的重要作用
器件索引网络地图最新更新手机版站点相关:嵌入式处理器嵌入式操作系统开发相关
FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科词云:
微信公众号